42 research outputs found

    Meixner class of non-commutative generalized stochastic processes with freely independent values II. The generating function

    Full text link
    Let TT be an underlying space with a non-atomic measure σ\sigma on it. In [{\it Comm.\ Math.\ Phys.}\ {\bf 292} (2009), 99--129] the Meixner class of non-commutative generalized stochastic processes with freely independent values, ω=(ω(t))tT\omega=(\omega(t))_{t\in T}, was characterized through the continuity of the corresponding orthogonal polynomials. In this paper, we derive a generating function for these orthogonal polynomials. The first question we have to answer is: What should serve as a generating function for a system of polynomials of infinitely many non-commuting variables? We construct a class of operator-valued functions Z=(Z(t))tTZ=(Z(t))_{t\in T} such that Z(t)Z(t) commutes with ω(s)\omega(s) for any s,tTs,t\in T. Then a generating function can be understood as G(Z,ω)=n=0TnP(n)(ω(t1),...,ω(tn))Z(t1)...Z(tn)σ(dt1)...σ(dtn)G(Z,\omega)=\sum_{n=0}^\infty \int_{T^n}P^{(n)}(\omega(t_1),...,\omega(t_n))Z(t_1)...Z(t_n)\sigma(dt_1)...\sigma(dt_n), where P(n)(ω(t1),...,ω(tn))P^{(n)}(\omega(t_1),...,\omega(t_n)) is (the kernel of the) nn-th orthogonal polynomial. We derive an explicit form of G(Z,ω) G(Z,\omega), which has a resolvent form and resembles the generating function in the classical case, albeit it involves integrals of non-commuting operators. We finally discuss a related problem of the action of the annihilation operators t\partial_t, tTt\in T. In contrast to the classical case, we prove that the operators \di_t related to the free Gaussian and Poisson processes have a property of globality. This result is genuinely infinite-dimensional, since in one dimension one loses the notion of globality

    Non-equilibrium stochastic dynamics in continuum: The free case

    Full text link
    We study the problem of identification of a proper state-space for the stochastic dynamics of free particles in continuum, with their possible birth and death. In this dynamics, the motion of each separate particle is described by a fixed Markov process MM on a Riemannian manifold XX. The main problem arising here is a possible collapse of the system, in the sense that, though the initial configuration of particles is locally finite, there could exist a compact set in XX such that, with probability one, infinitely many particles will arrive at this set at some time t>0t>0. We assume that XX has infinite volume and, for each α1\alpha\ge1, we consider the set Θα\Theta_\alpha of all infinite configurations in XX for which the number of particles in a compact set is bounded by a constant times the α\alpha-th power of the volume of the set. We find quite general conditions on the process MM which guarantee that the corresponding infinite particle process can start at each configuration from Θα\Theta_\alpha, will never leave Θα\Theta_\alpha, and has cadlag (or, even, continuous) sample paths in the vague topology. We consider the following examples of applications of our results: Brownian motion on the configuration space, free Glauber dynamics on the configuration space (or a birth-and-death process in XX), and free Kawasaki dynamics on the configuration space. We also show that if X=RdX=\mathbb R^d, then for a wide class of starting distributions, the (non-equilibrium) free Glauber dynamics is a scaling limit of (non-equilibrium) free Kawasaki dynamics

    On convergence of generators of equilibrium dynamics of hopping particles to generator of a birth-and-death process in continuum

    Full text link
    We deal with two following classes of equilibrium stochastic dynamics of infinite particle systems in continuum: hopping particles (also called Kawasaki dynamics), i.e., a dynamics where each particle randomly hops over the space, and birth-and-death process in continuum (or Glauber dynamics), i.e., a dynamics where there is no motion of particles, but rather particles die, or are born at random. We prove that a wide class of Glauber dynamics can be derived as a scaling limit of Kawasaki dynamics. More precisely, we prove the convergence of respective generators on a set of cylinder functions, in the L2L^2-norm with respect to the invariant measure of the processes. The latter measure is supposed to be a Gibbs measure corresponding to a potential of pair interaction, in the low activity-high temperature regime. Our result generalizes that of [Finkelshtein D.L. et al., to appear in Random Oper. Stochastic Equations], which was proved for a special Glauber (Kawasaki, respectively) dynamics

    Binary jumps in continuum. II. Non-equilibrium process and a Vlasov-type scaling limit

    Full text link
    Let Γ\Gamma denote the space of all locally finite subsets (configurations) in Rd\mathbb R^d. A stochastic dynamics of binary jumps in continuum is a Markov process on Γ\Gamma in which pairs of particles simultaneously hop over Rd\mathbb R^d. We discuss a non-equilibrium dynamics of binary jumps. We prove the existence of an evolution of correlation functions on a finite time interval. We also show that a Vlasov-type mesoscopic scaling for such a dynamics leads to a generalized Boltzmann non-linear equation for the particle density
    corecore